Merle, the gene we needed but did not know it.

Neil O'Sullivan PhD

A Presentation for
Midland \& West of England Great Dane Club

Merle (the technical stuff)

* The gene resides on chromosome 17 and it is the premelanosome protein (PMEL) with a short interspersed nuclear element (SINE) commonly known as a poly (T) tail.
* None merle is the homozygous recessive (mm genotype). Mantles and Blacks are normally mm genotypes.
* Merles and Harlequins are heterozygous, so they carry one copy of the dominant merle allele and one copy of none merle Mm genotype.
* SINE will vary in length as repeat elements are subject to errors in transcription and so the length of the poly (T) tail varies. This variation in length results in different intensities of expression of the merle phenotype.

Merle, variation in expression.

* Whites and Merlequins are homozygous for the merle gene. They have two copies of merle (MM genotype).
* SINE variable length results in different levels of expression of merle.
* A small percentage of Mantles and Blacks will have short poly (T) tail and express almost no merle at all, this form is called the cryptic merle. A Mantle or Black looking dog for the most part but with significant merle, but not full expression of merle has a poly (T) tail which is longer than the cryptic merle but shorter than the regular merle and is called atypical merle. A poly (T) tail longer than the normal merle results in a rare expression of merle known unfortunately as the harlequin merle. It is not the true harlequin.
* M is normal merle, M^{c} is cryptic merle, M^{a} is atypical merle, M^{h} is harlequin merle, and m is no merle.

Mating Harlequin to Harlequin produces many different colors. Why is this the case?

Harlequin to Harlequin Breeding
 Both parents are not carrying any undesirable color genes

 (Harlequin: $a^{y} a^{y}$ BB DD ee Hh KK Mm sisi)Segregating genes are H and M
Each parent will produce four different gametes (eggs \& sperm)
HM, Hm, hM, hm
PROCEED with caution due to White, and Merlequin progeny

Harlequin to Harlequin mating	HM	Hm	hM	
HM	HHMM	HHMm	HhMM White	HhMm Harlequin
Hm	HHMm	HHmm	HhMm Harlequin	Hhmm Mantle
hM	HhMM White	HhMm Harlequin	MhMM Merlequin	hhMm Merle
hm	HhMm Harlequin	Hhmm Mantle	hhMm Merle	Mhmm Mantle

Harlequin to Harlequin produces

Average results of this mating are:
33\% Harlequin
25\% Mantle
17\% Merle
17\% White, 8\% Merlequin

Harlequins are all Merles

* The Harlequin is typically a Black Mantle that has one copy of merle gene Mm , and one copy of harlequin gene Hh .
* Two copies of harlequin are an in-utero lethal HH

Whites, are homozygous merles, MM, that carry one copy of harlequin, Hh.

* Merlequins, are homozygous merles, MM, that do not carry for harlequin, hh.
* All harlequins are dual obligate heterozygotes.
* All homozygous merles, have a high risk of lacking pigmentation in the inner ear resulting in deafness. They also have a risk of microphthalmia, leading to blindness.
* Many countries ban matings where both parents carry merle genes.

Mating Harlequin to Mantle

Harlequin to Mantle Breeding

Both parents are not carrying any undesirable color genes, Mantle does not carry for Harlequin (H)
(Harlequin: $a^{y} a^{y}$ BB DD ee Hh KK Mm sis s^{i}) (Mantle: $a^{y} a^{y}$ BB DD ee hh KK $\mathrm{mm} \mathrm{s}^{\left.\mathrm{i} \mathrm{s}^{\prime}\right)}$
Segregating genes are H and M in the Harlequin
Gametes (eggs \& sperm) are HM, Hm, hM, hm from the Harlequin and hm from the Mantle

Harlequin to Mantle mating

	HM	Hm	hM	hm
hm	HhMm Harlequin	Hhmm Mantle	hhMm Merle	hhmm Mantle

Harlequin to Mantle

the Mantle does not carry a harlequin gene
Average results of this mating are:

25\% Harlequin

50\% Mantle

 25\% Merle
Mating Harlequin to Mantle

Harlequin to Mantle Breeding

Both parents are not carrying any undesirable color genes, Mantle carries for Harlequin (H)
(Harlequin: $a^{\bigvee} a^{y}$ BB DD ee Hh KK Mm sis s^{i}) (Mantle: $a^{y} a^{y}$ BB DD ee Hh KK $\mathrm{mm} \mathrm{s}^{\mathrm{i}} \mathrm{s}^{\prime}$)
Segregating genes are H and M in the Harlequin and H in the Mantle Gametes (eggs \& sperm) are HM, Hm, hM, hm from the Harlequin and Hm , hm from the Mantle

Harlequin to Mantle mating Mantle carries for Harlequin

	HM	Hm	hM	hm
Hm	HHMm	HHmm	HhMm Harlequin	Hhmm Mantle
hm	HhMm Harlequin	Hhmm Mantle	hhMm Merle	hhmm Mantle

Harlequin to Mantle Mantle does carry a harlequin gene

Average results of this mating are:

33\% Harlequin

50\% Mantle 17\% Merle

Harlequin to Merle Breeding

Both parents are not carrying any undesirable color genes (Harlequin: $a^{y} a^{y}$ BB DD ee Hh KK Mm sis s^{i}) (Merle: $a^{y} a^{y}$ BB DD ee hh KK Mm sisi)

Segregating genes are H and M in the Harlequin and M in the Merle

Gametes (eggs \& sperm) are HM, Hm, hM, hm from the Harlequin and hM, hm from the Merle

Harlequin to Merle mating

	HM	Hm	hM	hm
hM	HhMM White	HhMm Harlequin	hhMM Merlequin	hhMm Merle
hm	HhMm Harlequin	Hhmm Mantle	hhMm Merle	hhmm Mantle

Harlequin to Merle mating

Average results of this mating are:
25\% Harlequin
25\% Mantle
25\% Merle
12.5\% White
12.5\% Merlequin

Mantle to Merle Mating

Both parents are not carrying any undesirable color genes, Mantle carries for Harlequin (H)
(Mantle: $a^{y} a^{y}$ BB DD ee Hh KK mm sisis (Merle: $a^{y} a^{y}$ BB DD ee hh KK $\mathrm{Mm} \mathrm{s}^{\mathrm{i}} \mathrm{s}^{\mathrm{i}}$)

Segregating genes are H in the Mantle and M in the Merle
Gametes (eggs \& sperm) are Hm, hm from the Mantle and hM, hm from the Merle

RECOMMENDED

Mantle to Merle Mating

	Hm	hm
hM	HhMm Harlequin	hhMm Merle
hm	Hhmm Mantle	hhmm Mantle

Mantle to Merle mating

Average results of this mating are:
25\% Harlequin
50\% Mantle
25\% Merle

Mantle to Merle mating

Both parents are not carrying any undesirable color genes, Mantle does not carry for Harlequin (H)
(Mantle: $a^{y} a^{y}$ BB DD ee hh KK mm sisis) (Merle: $a^{y} a^{y}$ BB DD ee hh KK $\mathrm{Mm} \mathrm{s}^{\mathrm{i} \mathrm{s}^{\text {i }}}$)
Segregating genes are M in the Merle
Gametes (eggs \& sperm) are hm from the Mantle and hM, hm from the Merle

RECOMMENDED

Mantle to Merle mating

	hm
$\mathbf{h M}$	hhMm Merle
hm	hhmm Mantle

Mantle to Merle mating

Average results of this mating are:

50\% Mantle

50\% Merle

Mantle to White breeding

Both parents are not carrying any undesirable color genes, both Mantle and White carry for Harlequin (H)
(Mantle: $a^{y} a^{y}$ BB DD ee Hh KK mm sisi) (White: $a^{y} a^{y}$ BB DD ee Hh KK MM s'si)

Segregating genes are H in both parents
Gametes (eggs \& sperm) are Hm, hm from the Mantle and HM, hM from the White

Recommended

Mantle to White breeding

	Hm	hm
HM	HHMm	HhMm Harlequin
hM	HhMm Harlequin	hhMm Merle

Mantle to White breeding

Average results of this mating are:
66\% Harlequin
33\% Merle

Mantle to Merlequin Breeding

Both parents are not carrying any undesirable color genes. Neither parent carries for Harlequin (H)
(Mantle: $a^{y} a^{y}$ BB DD ee hh KK mm $s^{i} s^{i}$) (Merlequin: $a^{y} a^{y}$ BB DD ee hh KK MM sisi)

There are no segregating genes
Gametes (eggs \& sperm) are m from the Mantle and M from the Merlequin
Recommended

Mantle to Merlequin Breeding

Mantle to Merlequin Breeding

Average results of this mating are:
100\% Merle

Merle to Merle Breeding

Both parents are not carrying any undesirable
color genes
(Merle: $a^{y} a^{y}$ BB DD ee hh KK Mm sisi)
Segregating gene is M in both parents
Gametes (eggs \& sperm) are M, m
PROCEED with caution due to White progeny

Merle to Merle Breeding

	M	m
\mathbf{M}	MM	Mm
\mathbf{m}	White	Merle
	Merle	mm

Merle to Merle Breeding

Average results of this mating are:

50\% Merle

25\% Mantle
25\% White

Merle to Black Breeding

Both parents are not carrying any undesirable color genes (Merle: $a^{y} a^{y}$ BB DD ee hh KK Mm s'sis (Black: $a^{y} a^{y}$ BB DD ee hh KK mm SS) Segregating genes are M, S
Gametes (eggs \& sperm) are Msi', ms from the Merle and mS from the Black

Merle to Black Breeding

	Ms $^{\mathbf{i}}$	$\mathrm{ms}^{\mathbf{i}}$
$\mathbf{m s}$	Mmssi Merle	mmss Black

Merle to Black Breeding

Average results of this mating are:
50% Black (with or without White on toes and chest)
50% Merle (Solid with or without White on toes and chest)

The "English" Breeding

Anne Bodey, who worked for Margaret Everton in the 1980's had a Blue bitch which to everyone's surprise carried for the harlequin gene. Anne and Margaret had an intact Merle male of Impton breeding back boarding at Chalet Impney.

Yes you guessed it Anne's Blue bitch had a tryst with the Merle male. One of the resulting puppies was a Harlequin male.

This lead me to collect all the breeding records across the UK and Ireland from Harlequin/Black/Mantle and Merles. This resulted in my first peer reviewed research paper on the inheritance of Harlequin in the Great Dane

Merle to Blue Breeding

Both parents are not carrying any undesirable color genes (Merle: $a^{\mathrm{y}} \mathrm{a}^{\mathrm{y}}$ BB DD ee hh KK Mm sisis (Blue: $a^{\mathrm{V}} \mathrm{a}^{\mathrm{y}}$ BB dd ee Hh KK mm SS)

Segregating genes are D, H, M, S
Gametes (eggs \& sperm) are DhMsi', Dhms from the Merle and dHmS, dhmS from the Blue

Merle to Blue Breeding

	DhMs	Dhmsi
dHms	DdHhMmSsi Harlequin	DdHhmmSsi Black
dhms	DdhhMmSs Merle	Ddhhmmssi Black

Merle to Blue Breeding

Average results of this mating are:

50\% Black (with or without White on toes and chest)
25% Merle (Solid with or without White on toes and chest)
25% Harlequin (With markings on the neck, legs, and chest)

Harlequins cannot be Bred without the Merle

Without the Merle we have no Harlequin.

Harlequins:

are modified Merles, where the harlequin gene acts to turn the dilute gray on merle to white on a harlequin.

Usually Harlequins and Merles will have the Mantle coloring, because they ideally should have been fixed for the so called Irish spotting allele s^{i}, however we know the Spotting gene is segregating for $\mathrm{S}=$ solid, $\mathrm{s}^{\mathrm{i}}=$ mantle (Irish spotting), and $\mathrm{s}^{\mathrm{p}}=$ piebald in Great Dane.

Thank You

Questions?

